Design and Implementation of a High-Efficiency Multiple Output Charger Based on the Time-Division Multiple Control Technique

Van-Long Tran, Hai-Nam Vu, Dai-Duong Tran, and Woojin Choi, Member, IEEE

Abstract—Multiple output converters (MOCs) are widely applied to applications requiring various levels of output voltages due to their advantages in terms of cost, volume, and efficiency. However, most of the conventional MOCs cannot regulate multiple outputs tightly and they can barely avoid the cross-regulation problem. In this paper, the recently developed time-division multiple control (TDMC) method, which can regulate all of the outputs with a high accuracy, is used for a multiple output battery charger based on the phase-shift full-bridge topology to simultaneously charge three batteries. The proposed charger is able to charge three different kinds of batteries or three of the same kind of battery in different state of charges (SOCs) independently and accurately with the constant current/constant voltage (CC/CCV) charge method. As a result, the strict ripple specification of a battery can be satisfied for multiple battery charges without difficulty. In addition, the proposed charger exhibits a high efficiency since the soft switching of all of the switches during the entire charge process can be guaranteed. The operating principle of the converter and the design of the controller, including the state-space average modeling, will be detailed, and the validity of the proposed method is verified through experiments.

Index Terms—Multiple output battery charger, phase shift full bridge, time-division multiple control, and zero-voltage switching—zero-current switching (ZVS–ZCS).

I. INTRODUCTION

MULTIPLE output converters (MOCs) are widely applied in many applications such as the switching-mode power supplies (SMPSs) of personal computers, portable electronics, household equipment, multiple voltage power supplies, and telecommunication systems [1]–[3]. One of the more promising applications of MOCs would be multiple battery chargers due to its advantages in terms of cost, volume, efficiency, and space for installation.

However, most of the conventional MOCs are not able to regulate all of the outputs accurately and independently without the help of complex hardware and controllers, which makes them unable to satisfy the strict ripple specifications of charge applications [4]–[7]. In order to overcome the aforementioned disadvantages, several methods have been suggested in the literature [8]–[17]. One method is to apply pre- and postregulators to control the multiple outputs [8]–[12]. However, accurate control in each slave output can barely be achieved since it is difficult to exactly match the magnetic coupling at each output. Furthermore, this makes it difficult to analyze the circuit. As a result, the design of the controller becomes difficult due to the complicated regulation between the outputs.

Another method uses a controlled current source in the form of a fairly big inductor connected to each output through a switch on a time shared basis during one switching cycle [13]–[15]. However, since it requires a large inductor as a current source, the converter becomes bulky and expensive. In addition, the method is extremely difficult to implement and complex in terms of small signal modeling on account of the differences in time sharing at each output during the freewheeling period of the inductor current. As a result, cross-regulation problem is an inherent disadvantage of this method.

Other methods utilize a hybrid control to regulate the multiple outputs. In [16], two outputs are regulated by controlling the duty cycle and frequency of the switch. However, the number of converter outputs is limited to two and the regulation performance of each output is not good enough for the charge applications. In [17], the outputs are regulated independently based on multiple-band modulation and demodulation, which are operated by superposed sinuosoidal pulsewidth modulation (PWM), pulse frequency modulation, and band-pass filtering. However, this method is very complex in terms of its control and the large filter required for each output increases the volume and decreases the efficiency of the converter.

Since all of the aforementioned methods are designed to control all of the outputs in one switching cycle, the cross regulation between the outputs is an inherent problem. In addition, this requires as many secondary windings in the transformer as the number of outputs in case of isolated converter topologies. The recently developed time-division multiple control (TDMC) method has been applied to multiple output chargers in order to overcome the drawbacks mentioned earlier [18], [19]. However, since the proposed topology in [18] was developed based on the double-ended forward converter, it is only suitable for small power applications due to the inherent limitation of the topology. In addition, the efficiency is not high enough since all the switches operate with hard switching and the duty cycle of the switch is limited less than 50% in order to reset the magnetizing current of the transformer. In this paper, a TDMC method based on the phase-shift full-bridge topology is proposed for multiple
output charger applications to overcome the drawbacks of previous research. The major advantages of the proposed multiple output charger can be summarized as follows:

1. it offers an even degree of tight and independent regulation for each output, which is essential for multiple output charge applications;
2. it is simple in design and analysis and easy to model the circuit;
3. no cross-regulation problem exists among the outputs;
4. only one secondary winding of the transformer is required to regulate the multiple outputs if no isolation between the outputs is required;
5. zero-voltage switching (ZVS) turn-on can be achieved at all primary switches during the entire charge process;
6. zero-current switching (ZCS) turn-on and ZVS turn-off can be achieved at all the secondary switches with no additional circuit.

As a result, the proposed converter can be used for the higher power applications since it has been developed based on the full bridge topology and exhibits a high efficiency. The proposed multiple battery charger is able to charge a number of batteries at different state of charges (SOCs) by using constant-current and constant-voltage (CC/CV) charge modes, which is considered to be an efficient method to charge batteries [6], [20]. Since the TDMC method can control each output independently, the battery at each output can be charged independently by either the CC mode or the CV mode. As a result, three batteries can be charged simultaneously. In addition, it is possible to satisfy the strict ripple specifications of the batteries since the cross-regulation problem between the outputs does not exist. The circuit operation and modeling of the proposed topology will be detailed in the following sections. The effectiveness and feasibility of the proposed multiple output charger will be verified by experimental results.

II. PROPOSED MOC AND ITS OPERATION PRINCIPLE

Fig. 1 shows the proposed multiple output charger based on the phase-shift full-bridge topology, including R–C models of the Li–Po batteries with the TDMC method. As shown in Fig. 1, the proposed converter is developed by modifying the conventional phase-shift full-bridge converter, where three different output circuits share the secondary windings of the transformer and an active switch (SS1, SS2, and SS3) is added to each output to carry out the TDMC method. In addition, a diode is added in front of the secondary switch at each output to block the discharge current from the batteries with high voltage, while one battery is being charged.

Fig. 2 demonstrates an overview of the PWM scheme for the proposed converter with the TDMC method during the unbalanced load at each output in which \(t_{\text{addr}} \) is the dead time between the two switches in a leg at the primary side and the secondary switches at each output. As shown in Fig. 2, the PWM is performed at the switching frequency of \(f_s \) for the primary switches and at \(f_s/3 \) for each of the secondary switches. The proposed method is able to regulate all of the outputs in one sampling time \((3T_s) \). Each output is controlled independently and precisely during one interrupt cycle \(T_S \) by way of a secondary switch. In one interrupt cycle, there is only one secondary switch turned on to allow the primary side to control each output by shifting the phase between the leading-leg and lagging-leg switches. Similarly, another output is regulated in the next interrupt cycle. Hence, all of the outputs are regulated properly in one sampling time \((3T_s) \). In the proposed method, since each output is regulated independently within one interrupt cycle \((T_S) \), no cross-regulation problem exists. Thus, it is possible to provide an even degree of tight regulation for all of the outputs.

As demonstrated in Fig. 3, the primary side operates as a conventional phase-shift full-bridge converter and the TDMC method is implemented at the secondary side through the active switches. The conventional phase shift PWM scheme is used to achieve ZVS at all of the primary side switches by shifting the phases of the gate signals between leading-leg switches \((S_1 \text{ and } S_3) \) and lagging-leg switches \((S_2 \text{ and } S_4) \) [21]. Since, in the proposed converter, the primary side operates at the switching frequency of \(f_s \) and each of the secondary sides operates at the switching frequency of \(f_s/3 \) to achieve the TDMC method, each secondary output circuit operates sequentially with the help of the additional switches \((SS_1, SS_2, \text{ and } SS_3) \) at each switching
cycle (T_S) of the primary side. Hence, only the operation of the primary circuit and one secondary circuit out of the three is described since others operate in the same manner. In order to simplify the analysis of the circuit operation, some assumptions are made as follows. All of the switches and diodes are ideal except for the output capacitor and the internal anti-parallel diode of the switches, and all of the other parasitic components are neglected. The operation principle of the proposed converter at each output under the continuous conduction mode (CCM) consists of the following nine modes:

1) Mode 1 (t_0, t_1) [see Fig. 4(a)]: Prior to t_0, switches S_2 and S_3 are conducting and the power is transferred from the primary side to the secondary side through the secondary switch SS_3. After the switch S_3 is turned off at $t = t_0$, the primary current I_{Pri} charges the output capacitance of switch S_3 and discharges the output capacitance of switch S_1. At $t = t_1$, the voltage of switch S_1 is decreased to zero, resulting in the conduction of its body diode; hence, the ZVS condition is achieved for switch S_1. Meanwhile, the voltage of switch S_3 is increased to the input voltage V_S and the switch current is decreased to zero. The transformer secondary voltage V_{Sec} becomes zero at $t = t_1$ and the output inductor current I_L flowing through diode D_4 ramps down with a slope of V_o/L_{o1}.

2) Mode 2 (t_1, t_2) [see Fig. 4(b)]: During this interval, the primary current I_{Pri} freewheels through the switch S_1 and switch S_2 and no power is delivered to the load. The secondary switch SS_1 is turned on at t_1, and the voltage across it starts to decrease to zero. However, the current of the switch SS_1 remains at zero until the primary current I_{Pri} reverses its direction and rise to reach the reflected output inductor current at t_3. Hence, the ZCS turn-on of the secondary switch SS_1 is achieved during this mode. The output inductor current I_L flowing through diode D_4 ramps down with a slope of V_o/L_{o1}.

3) Mode 3 (t_2, t_3) [see Fig. 4(c)]: At $t = t_2$, the switch S_2 is turned off, the primary current I_{Pri} starts to charge the output capacitance of switch S_2 and discharge the output capacitance of switch S_4. Hence, the voltage of switch S_2 is increased to the input voltage V_S and the switch current is decreased to zero. The transformer secondary voltage V_{Sec} remains at zero and I_L keeps ramping down with a slope of V_o/L_{o1} in this mode. No power is delivered to the output in this mode, and it is considered as the duty cycle loss.

4) Mode 4 (t_3, t_4) [see Fig. 4(d)]: At $t = t_3$, the voltage of switch S_4 is decreased to zero, resulting in the conduction of its body diode, thereby achieving the ZVS condition. The transformer secondary voltage V_{Sec} starts to increase when switch S_4 is turned on at $t = t_3$. The output inductor current I_L keeps ramping down with a slope of V_o/L_{o1} and reaches its minimum value at $t = t_4$. This mode is also considered as the duty cycle loss.

5) Mode 5 (t_4, t_5) [see Fig. 4(e)]: At t_4, the secondary switch SS_2 starts to conduct since it was already turned on with ZCS during the mode 1. The output inductor current starts to ramp up with a slope of $(V_{Sec} - V_o)/L_{o1}$ until $t = t_5$. The primary current I_{Pri} is equal to the reflected output inductor current I_{Lsec}/n, and the power is delivered to the secondary side through switches S_1 and S_4. Since the operation principle of the primary side is symmetrical during one switching period T_s, the circuit operation of the other half of a switching period (modes 6 and 7) is the same as that of the first half of a switching period (modes 1 to 5).

6) Mode 6 (t_5, t_6) [see Fig. 4(f)]: The primary switch S_1 is turned off at t_5. The primary current I_{Pri} charges the output capacitance of switch S_1 and discharges the output capacitance of switch S_3. Therefore, the voltage of switch S_3 is decreased to zero resulting in the conduction of its body diode. Hence, the ZVS turn-on condition for the switch S_3 is achieved, while the voltage of switch S_1 is increased to the input voltage V_S. The current of switch S_1 is decreased to zero and the output inductor current I_L starts to ramp down with a slope of V_o/L_{o1}.

7) Mode 7 (t_6, t_7) [see Fig. 4(g)]: At $t = t_6$, the switch S_3 is turned on with ZVS. The primary current I_{Pri} freewheels through switch S_3 and switch S_4, and no current flows through switches S_1 and S_2 during this mode. As a result, the transformer secondary voltage V_{Sec} remains at zero and it increases to V_S/n when switch S_2 turns on. The output inductor current I_L ramps down with a slope of V_o/L until $t = t_7$. During this mode, the switch S_2 achieves ZVS turn-on by the same principle applied to the switch S_4 as already explained in the mode 3 and mode 4.

8) Mode 8 (t_7, t_8) [see Fig. 4(h)]: The output inductor current starts to ramp up with a slope of $(V_{Sec} - V_o)/L_{o1}$ until $t = t_8$. The primary winding current I_{Pri} is equal to the reflected output inductor current I_{Lsec}/n. In this mode, the power is delivered to the secondary side through switches S_2, S_4 and SS_1. At $t = t_8$, both switch S_4 and SS_1 are turned off and the current of the secondary switch SS_1 is decreased to zero immediately. Since the current is
freewheeling in the primary side and no voltage is applied to the secondary winding of the transformer, the voltage across the SS1 is maintained at zero until the switch S4 turns on and the ZVS turn-off of the secondary switch SS1 is achieved.

The second and third outputs operate in the same manner as that already described in Mode 1 through Mode 8.

In order to achieve the ZVS turn-on for all primary switches during the overall charge process, sufficient energy for the soft switching and a suitable dead-time are essential. To guarantee the soft switching condition, the total inductive energy (E_L) stored in the primary circuit should be larger than the total capacitive energy (E_C) of the switches during modes 1 and 4 [see Fig. 4(a) and (d)]. The total capacitive energy in a switching leg can be expressed as (1) by using the output capacitance of switch C_OSS and the input voltage V_s. As shown in mode 1, the leakage inductance, the magnetizing inductance, and the reflected output inductance contribute to the available inductive energy for ZVS. Hence, the total inductive energy available for the ZVS of the leading-leg switches can be expressed as (2).

However, in the mode 3, since the voltage of the transformer is clamped to zero and the output inductor current freewheels through the diode D4 at the secondary side, only the energy stored in the leakage inductance is used for the ZVS of the lagging-leg switches as (3)

\[
E_C = C_{OSS} \times V_s^2
\]

\[
E_{L,lead} = \frac{1}{2} L_M I_{M,pk}^2 + \frac{1}{2} L_{I_{max}}^2 + \frac{1}{2} L_k (I_{M,pk} + \frac{I_{L, max}}{n})^2
\]

\[
E_{L,Lag} = \frac{1}{2} L_k \left(I_{M,pk} + \frac{I_{L, min}}{n} \right)^2
\]

where L_M and I_M are the magnetizing inductance and magnetizing current of the transformer, respectively. As shown in (2) and (3), the required inductive energy for the ZVS of the leading switches is larger than that of the lagging-leg switches. Thus, the magnetizing and leakage inductances of the transformer should be designed to guarantee the ZVS of the lagging-leg switches at the minimum output load in order to guarantee the ZVS condition for all of the primary switches during the overall charge process. As shown in Fig. 5, the inductive components of the transformer need to be calculated based on the charge current at the end of the CV-mode charge [0.1 C (1.2 A)] [6], [7].

III. STATE-SPACE AVERAGE MODELING OF THE PROPOSED Charger for CC/CV Charge Operation

As shown in Fig. 1, since the three secondary circuits have the same structure, the same control method can be applied to each secondary circuit in a time-shared basis. Thus, the
control-to-output transfer function for only one secondary circuit needs to be derived. The battery is modeled by a resistor connected in series with a capacitor \(C_b \), having an initial voltage of \(V_{C_b} \) [22], [23]. The state space average model of the proposed multiple charger at each output including the R–C equivalent circuit model of Li–Po battery is shown in Fig. 6, where \(D = 1/2 - \vartheta/180^\circ \) (the effective duty cycle), and \(\vartheta \) is the phase shift between the leading leg and lagging leg switches. By using KCL and KVL for the equivalent circuit during the phase shift and non-phase shift times between the leading leg and lagging leg, respectively, the state-space-averaged equations for the proposed charger at each output can be obtained as (4) to (8) [24], [25]

\[
3L \frac{d\hat{i}_L}{dt} = 2\hat{d} \left(\frac{\hat{v}_o}{n} - \hat{v}_o \right) - (3 - 2\hat{d})\hat{v}_o \tag{4}
\]

\[
\hat{\hat{i}}_L = \hat{i}_c + \hat{i}_o \tag{5}
\]

\[
\hat{\hat{i}}_c = C \frac{d(\hat{v}_o - \hat{v}_o R_c)}{dt} \tag{6}
\]

\[
\hat{\hat{v}}_o = \frac{1}{C_b} \int \hat{i}_o dt + \hat{v}_o R_b \tag{7}
\]

\[
\hat{\hat{i}}_s = \frac{2}{3} \frac{\hat{d}}{n} \hat{i}_L \tag{8}
\]

By perturbing and linearizing the earlier averaged equations (4) to (8), the steady-state equations can be found as (9) to (11) based on the dc terms, and the small-signal-model equations can be found as (12) to (16) based on the ac terms

\[
\hat{\hat{v}}_o = \frac{2}{3} \frac{D}{n} \hat{v}_o + V_{C_b} \tag{9}
\]

\[
\hat{\hat{v}}_o = R_b \hat{i}_L + V_{C_b} \tag{10}
\]

\[
\hat{\hat{i}}_L = \hat{i}_o + \hat{i}_o \tag{11}
\]

\[
3L \frac{d\hat{i}_L}{dt} = \frac{2\hat{V}_o}{n} \hat{d} + 2\frac{D}{n} \hat{v}_o - 3\hat{\hat{v}}_o \tag{12}
\]

\[
\hat{\hat{i}}_L = \hat{i}_o + \hat{i}_o \tag{13}
\]

\[
\hat{\hat{i}}_c = C \frac{d(\hat{v}_o - \hat{v}_o R_c)}{dt} \tag{14}
\]

\[
\hat{\hat{i}}_o = \frac{1}{C_b} \int \hat{i}_o dt + R_b \hat{i}_o \tag{15}
\]

\[
\hat{\hat{i}}_s = \frac{2}{3\hat{d}} (D \hat{i}_o + I_o \hat{d}) \tag{16}
\]

In the CCM, the output inductor and the output capacitor of the proposed charger can be designed by using (17) and (18) based on the large-signal equations

\[
L = \frac{V_o (3 - 2D_{\text{min}}) T_o}{2I_{o,\text{min}}} \tag{17}
\]

\[
C = \frac{3(3 - 2D_{\text{min}}) T_o^2 V_o}{8L \Delta V_o} \tag{18}
\]

where \(D_{\text{min}} \) is the minimum effective duty cycle, \(I_{o,\text{min}} \) is the minimum output current, and \(\Delta V_o \) is the output voltage ripple. In the design of the output inductor, the cut-off charge current of the Li–Po batteries is used to guarantee the CCM operation of the charger during the entire charge process. Then, the output capacitor can be selected by using the output inductance value and the output voltage ripple values.

Since the proposed multiple output charger charges three Li–Po batteries by using constant current (CC) and constant voltage (CV) charge modes, it is necessary to derive the control-to-output current and control-to-output voltage transfer function for each output. By taking the Laplace transformation of (12) to (16), the resulting equations (19) to (21) can be obtained

\[
\hat{\hat{i}}_o = \frac{2\hat{V}_o \hat{d} + 2\frac{D}{n} \hat{v}_o - 3\hat{\hat{v}}_o}{3sL} = \hat{i}_c + \hat{i}_o \tag{19}
\]

\[
\hat{i}_c = sC (\hat{\hat{v}}_o - \hat{i}_o R_c) \tag{20}
\]

\[
\hat{\hat{v}}_o = \left(R_b + \frac{1}{sC_b} \right) \hat{i}_o \tag{21}
\]

The control-to-output voltage transfer function of the proposed multiple output charger can be obtained as (22) by substituting (9), (19), and (20) into (21)

\[
G_{vd}(s) = \left. \frac{\hat{\hat{v}}_o}{\hat{\hat{i}}_o} \right|_{\hat{\hat{i}}_o=0} = \frac{V_o}{D} \frac{(1 + a_1 s)(1 + a_2 s)}{s^2 b_3 + s^2 b_2 + s b_1 + 1} \tag{22}
\]

where \(a_1 = R_b C_b, a_2 = R_b C_b, b_1 = R_b C_b, b_2 = L C_b + R_b C_b, b_2 = L C_b, b_3 = R_b L C C_b, \) and \(b_1 = R_b L C C_b + R_b L C C_b. \)

Due to the huge capacitance value in the equivalent circuit model of the battery, the voltage variation at \(C_b \) during a small period of time can be neglected. Then, (21) can be rewritten as (23) as follows

\[
\hat{\hat{v}}_o \approx R_b \hat{i}_o \tag{23}
\]

The control-to-output current transfer function of the proposed multiple output charger can be obtained as (24) by substituting (22) into (23)

\[
G_{id}(s) = \left. \frac{\hat{\hat{i}}_o}{\hat{\hat{v}}_o} \right|_{\hat{\hat{v}}_o=0} = \frac{V_o + L \hat{i}_o R_b}{D R_b} \frac{(1 + a_1 s)(1 + a_2 s)}{s^2 b_3 + s^2 b_2 + s b_1 + 1} \tag{24}
\]
IV. DESIGN OF THE DUAL-LOOP CONTROLLER FOR THE CC/CV CHARGE OF THE PROPOSED CHARGER

In order to verify the validity of the transfer function derived for the design of the controller in the previous section, Bode plots of the circuit using both the ac sweep function and the transfer function block are drawn by PSIM as shown in Fig. 7. The results are well matched, which verifies the validity of the transfer function of the proposed charger. As shown in Fig. 7, both of the Bode plots of the control-to-output transfer functions have enough phase margin at the crossover frequency, and the gain slope in the high frequency range is enough to eliminate the switching noise. Then, it is necessary to put one pole at the origin to enhance the gain in the low frequency range, and one zero at the desired crossover frequency to make the closed-loop stable. Thus, the PI controller can be used for both voltage and current control of the proposed multiple output charger.

In this application, the CC/CV-mode charge is implemented by using a dual loop control where the inner control loop serves for the output current control and the outer loop serves for the output voltage control as shown in Fig. 8. The output voltage V_o is detected and compared with the reference voltage V_o^*. Then, an error signal is generated and amplified to generate the current reference I_o^*. Since the charge control starts with the constant current control at the beginning, the current reference should be limited to an appropriate value (6 A, 0.5 C in this case) to ensure safe charging of the battery. Then, the current reference I_o^* is compared with the measured output current to generate an error signal, which is transmitted to the current controller. The output of the current controller is then compared with the triangular waveform V_{T1} to generate PWM signals for the switches. In the design of the dual loop controller, the inner control loop requires a higher bandwidth, which is typically five to ten times faster than that of the outer loop, to guarantee that the inner loop will not affect the outer loop performance [26], [27]. The transfer functions of the closed loop control for the output current and output voltage in the z-domain are found as in (25) and (26), respectively

$$\begin{align*}
T_i (z) &= G_{ic} (z) \times G_{id} (z) \times H_i \\
T_o (z) &= G_{vc} (z) \times G_{vd} (z) \times H_v
\end{align*}$$

where

$$\begin{align*}
G_{id} (z) &= Z \left(\frac{1-e^{-T_{ds}z}}{s} \times e^{-T_{is}z} \times G_{id} (s) \right) \\
G_{vd} (z) &= Z \left(\frac{1-e^{-T_{ds}z}}{s} \times e^{-T_{is}z} \times G_{vd} (s) \right)
\end{align*}$$

where $G_{ic}(z)$ is the current loop compensator, $G_{vc}(z)$ is the voltage loop compensator, $(1-e^{-T_{ds}z})/s$ is the zero-order hold, $e^{-T_{is}z}$ is the computational delay, H_v is the voltage feedback gain, and H_i is the current feedback gain.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Fig. 9 shows a prototype of the proposed multiple output charger with the specification shown in the Table I and its implementation details can be found in the Table II. The operation
TABLE II
IMPLEMENTATION DETAILS OF THE PROPOSED CONVERTER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching frequency</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Inductor</td>
<td>Changsung Core, CH330125</td>
</tr>
<tr>
<td>Number of Turns</td>
<td>47</td>
</tr>
<tr>
<td>Capacitor</td>
<td>Samyoung, KMG 1023</td>
</tr>
<tr>
<td>IGBT</td>
<td>ST, STGB10NC60KD</td>
</tr>
<tr>
<td>MOSFET</td>
<td>ST, STPS10120C</td>
</tr>
<tr>
<td>Diode</td>
<td>ST, STPS10120C</td>
</tr>
<tr>
<td>Transformer</td>
<td>Changsung Core, ES4117A</td>
</tr>
<tr>
<td>AWG</td>
<td>25</td>
</tr>
</tbody>
</table>

and control of the proposed multiple charger are verified by simultaneously charging three Li–Po battery packs in different SOCs. The Li–Po battery pack configuration is 3S3P, meaning that three cells are connected in series and three strings of these are connected in parallel. For the control of the proposed charger, a digital signal processor (DSP), TMS320F28335 from TI, was used to achieve the high speed calculations and switching.

Fig. 10 shows the primary current waveform of the transformer with unbalanced load at each output. It is shown in the figure that the duty and the amplitude of the primary current change continuously at each switching cycle in order to regulate each output separately.

Figs. 11 and 12 show the voltage and current waveforms of the switches S_1 and S_4 with minimum load (22.7 W) at the end of the CV charge. It is clearly shown in Fig. 11 and 12 that ZVS turn-on of switches S_1 and S_4 is successfully achieved. Since ZVS turn-on of the switches S_2 and S_3 can also be achieved at in the same fashion, ZVS turn-on of all the primary switches can be achieved during the entire charge process.

Fig. 13 shows the ZCS turn-on and ZVS turn-off waveforms of a secondary switch SS_1 when the output power is 22.7 and 226.8 W, respectively. The worst condition for the soft switching of secondary switch SS_1 is made when the output power at each output is maximum (226.8 W) since the effective duty becomes maximum and the minimum time is provided to maintain the switch current and the switch voltage at zero to achieve ZCS turn-on and ZVS turn-off, respectively. Since the soft switching of the secondary switch SS_1 is successfully performed both with light load [see Fig. 13(a)] and heavy load [see Fig. 13(b)], it can be achieved during the entire charge process.

Fig. 14 shows the inductor current waveforms at each output of the proposed charger. As shown in this figure, only one of the secondary switches is turned on to regulate each of the outputs independently and tightly. It can be observed from Figs. 15 and 16 that the proposed charger with the TDMC method satisfies the output ripple specification of the Li–Po batteries during the entire charge process. The voltage ripple is less than 2% (<0.252 V) and the current ripple is less than 5% (<0.6 A). Both of these are lower than the maximum allowable ripple values suggested by the battery manufacturer as specified in Table I [4]–[7].

Fig. 17 shows the experimental waveforms of the proposed multiple charger when the load varies from 50% to 100% of the rated load at the third output, while a 100% load is applied to the first and second outputs. The load variation at the third output only causes a small transient on the voltage regulation of the third output. This verifies that no cross-regulation problem exists in the proposed charger with the TDMC method.

Figs. 18 and 19 show the charge current and charge voltage profiles of three Li–Po batteries in different SOCs being charged by the proposed multiple output charger. It is demonstrated that the proposed converter and the TDMC method work properly to charge the three batteries. No cross regulation is observed even in the case where each of the outputs works in different charge modes.

Fig. 20 shows an efficiency plot of the proposed charger at each input voltage when the load varies from 25 to 250 W. The
Fig. 13. ZCS turn-on and ZVS turn-off waveforms of the secondary switch SS1. (a) When the output power is 22.7 W and (b) when the output power is 226.8 W.

Fig. 14. Output inductor current waveforms of the proposed multiple output charger at each output.

Fig. 15. Output voltage waveforms of the proposed multiple output charger.

Fig. 16. Output current waveforms of the proposed multiple output charger.

maximum efficiency of the proposed charger is 95.6% at a 90% load.

Fig. 17. Transient characteristics of the proposed charger when the load varies from 50% to 100% at one output while 100% load is applied to the other outputs.

Fig. 18. Charge current profiles of the battery loads by using proposed multiple output charger.

Fig. 19. Charge voltage profiles of the battery loads by using the proposed multiple output charger.
VI. CONCLUSION

In this paper, a multiple output battery charger based on the TDMC technique is proposed and applied to the phase-shift full-bridge topology to simultaneously charge three Li–Po batteries. The proposed charger can regulate three outputs precisely and independently with only one secondary winding in the transformer. With the help of a digital signal processor capable of high-speed operation, the TDMC method can be simply implemented. However, there is a trade-off in the design between the number of outputs and the switching frequency of each output due to the size of the reactive components at the secondary side.

The proposed method offers a simple control technique to achieve an even degree of tight regulation for all of the outputs and can be applied to all kinds of isolated converter topologies. If it is applied to off-board charger applications for the EVs, the installation area can be significantly reduced thereby providing another benefit by decreasing the overall cost of the system.

REFERENCES

Van-Long Tran was born in Haiphong, Vietnam, in 1988. He received the B.S. degree in electrical engineering from the Hanoi University of Science and Technology, Hanoi, Vietnam, in 2011, and the M.S. degree in electrical engineering from Soongsil University, Seoul, Korea, in 2014. Since 2014, he has been a Power Supply Researcher at Lotusmic Corp., Goyang-si, South Korea. His current research interest includes dc–dc converters dealing with the renewable sources and batteries for energy storage system or hybrid electric vehicles, soft-switching techniques for the PWM/pulse-frequency modulation converters, and pulsed power systems for the laser applications.
Hai-Nam Vu was born in Quang Ninh, Vietnam, in 1991. He received the B.S. degree in electrical engineering from the Hanoi University of Technology, Hanoi, Vietnam, in 2014. He is currently working toward the M.S. degree at Soongsil University, Seoul, Korea.

His current research interests include soft-switching dc–dc converter for electric vehicles.

Dai-Duong Tran was born in Hai Phong, Vietnam, in 1988. He received the B.S. degree in electrical engineering from the Hanoi University of Technology, Hanoi, Vietnam, in 2011. He is currently working toward the M.S. degree at Soongsil University, Seoul, Korea.

He was a Research Engineer with Viettel Research and Development Institute, Hanoi, from 2012 to 2014. His current research interests include on-board battery chargers for electric vehicles, soft switching techniques for PWM converters, resonant converter analysis, and control scheme.

Woojin Choi (S’00–M’05) was born in Seoul, Korea, in 1967. He received the B.S. and M.S. degrees in electrical engineering from Soongsil University, Seoul, in 1990 and 1995, respectively, and the Ph.D. degree in electrical engineering from Texas A &M University, College Station, TX, USA, in 2004.

He was a Research Engineer with Daewoo Heavy Industries, Seoul, from 1995 to 1998. In 2005, he joined the School of Electrical Engineering, Soongsil University. His current research interests include modeling and control of electrochemical energy sources, such as fuel cells, batteries, and supercapacitors; power conditioning technologies in renewable energy systems; and dc–dc converters for electric vehicles and fuel cells. He is a Publication Editor of the Journal of Power Electronics of the Korean Institute of Power Electronics.

Dr. Choi is an Associate Editor of the IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS.